Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 43(5): 1112-1125, 2024 May.
Article in English | MEDLINE | ID: mdl-38517160

ABSTRACT

Freshwater mussels provide invaluable ecological services but are threatened by habitat alteration, poor water quality, invasive species, climate change, and contaminants, including contaminants of emerging concern (CECs). Contaminants of emerging concerns are well documented in aquatic environments, including the Great Lakes Basin, but limited information is available on how environmentally relevant mixtures affect freshwater mussel biology throughout their varied life stages. Our main goal was to assess mussels' reproductive output in response to exposure to agricultural and urban CEC mixtures during glochidial development through juvenile transformation and excystment focusing on how exposure duration and treatment affect: (1) the number of glochidia prematurely released by brooding females, (2) glochidial transformation through host-fish excystment, and (3) the number of fully metamorphosed juveniles able to continue the lifecycle. Mussels and host fish were exposed to either a control water (CW), control ethanol (CE), agriculture CEC mixture (AM), or urban CEC mixture (UM) for 40 and 100 days. We found no effect from treatment or exposure duration on the number of glochidia prematurely released. Fewer partially and fully metamorphosed AM juveniles were observed during the 100-day exposure, compared with the 40-day. During the 40-day exposure, CW produced more fully metamorphosed individuals compared with CE and UM, but during the 100-day exposure AM produced more fully metamorphosed individuals compared with the CW. There was reduction in fully metamorphosed juveniles compared with partially metamorphosed for CE and UM during the 40-day exposure, as well as in the CW during the 100-day exposure. These results will be important for understanding how mussel populations are affected by CEC exposure. The experiments also yielded many insights for laboratory toxicology exposure studies. Environ Toxicol Chem 2024;43:1112-1125. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Subject(s)
Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Fresh Water , Agriculture , Bivalvia/drug effects , Bivalvia/growth & development , Reproduction/drug effects , Ethanol/toxicity , Cities , Female
3.
Ecotoxicology ; 32(4): 451-468, 2023 May.
Article in English | MEDLINE | ID: mdl-37079163

ABSTRACT

Highly imperiled unionids have a complex life cycle including the metamorphosis of an obligate parasite life stage, larval glochidia, to the juvenile stage. Despite the known vulnerabilities of both glochidia and juveniles to pollutants, little is known on how metamorphosis success may be affected by chemical stress. Disruption of the transformation process in which glochidia encyst on the gills of a host fish, could lead to lowered recruitment and population declines. Transformation rates of Lampsilis cardium on host fish Micropterus salmoides were empirically derived from experimental exposures to low, medium, or high concentrations of an agricultural or urban mixture of contaminants of emerging concern (CECs) over two exposure durations. Transformation was characterized by: (1) a zero-inflated Poisson general linear mixed effects model to compare difference in transformation between exposure durations and (2) time response curves to describe the transformation curve using long-term exposure data. Lampsilis cardium transformation was similar between exposure durations. When compared to controls, CEC stress significantly reduced juvenile production (p « 0.05) except for the agricultural medium treatment and tended to increased encapsulation duration which while statistically insignificant (p = 0.16) may have ecological relevancy. Combining the empirically derived reduction of transformation rates with parameters values from the literature, a Lefkovich stage-based population model predicted strong declines in population size of L. cardium for all treatments if these results hold in nature. Management focus on urban CECs may lead to best conservation efforts though agricultural CECs may also have a concentration dependent impact on transformation and therefore overall recruitment and conservation success.


Subject(s)
Bass , Bivalvia , Unionidae , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Larva , Metamorphosis, Biological
4.
Hydrobiologia ; 850(5): 1091-1108, 2023.
Article in English | MEDLINE | ID: mdl-36742287

ABSTRACT

Native freshwater mussels (unionids) are indicators of water quality, with unique behaviors and movement patterns. Many of these species are endangered, yet basic movement and co-occurring community data are lacking for successful unionid conservation. In this study, movement, community, and habitat use among Ligumia recta, an endangered unionid in Michigan, were analyzed across four rivers in central Michigan. The effects of sex, community, substrate use, and other abiotic factors on the movement and occurrence of L. recta were quantified. 24 L. recta individuals were found with variable male:female ratios and were monitored bi-weekly. Over the recapture period, L. recta moved an average minimum convex polygon of 1.43 m2 per day but was variable among rivers. 19 unionid species were found occurring with L. recta; ~13 species in the same river reach as L. recta and ~5 species in closer proximity to L. recta. The tribe Lampsilini most often occurred in close proximity to L. recta. This study identified basic movement and occurrence patterns of L. recta and provides a better understanding of the status of L. recta in Michigan. Our study highlights useful methods in understanding imperiled unionids, expanding the knowledge of their movement, behavior, community assemblages, and habitat use. Supplementary Information: The online version contains supplementary material available at 10.1007/s10750-023-05145-2.

5.
J Appl Microbiol ; 133(6): 3645-3658, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36056619

ABSTRACT

AIMS: We examined the effects of a mixture of contaminants found in agricultural watersheds on the gut microbiota and physiology of both the freshwater mussel Lampsilis cardium, and L. cardium host fish Micropterus salmoides. METHODS AND RESULTS: Lampsilis cardium and M. salmoides were exposed to three concentrations of agricultural contaminants for 60 days (observing behaviour daily) before being sampled for gut microbiota analyses. DNA was extracted from the gut samples, amplified via PCR, and sequenced using the Illumina Mi-Seq platform. Only L. cardium guts had differing microbiota across treatments, with an increase in potentially pathogenic Aeromonas. We also provide novel evidence of a core microbiota within L. cardium and M. salmoides. In terms of physiology, female L. cardium exhibited a decrease in movement and marsupial gill display in contaminant exposures. CONCLUSIONS: Exposure to contaminants from agricultural watersheds may affect population recruitment within freshwater mussel communities over time. Specifically, increased pathogenic micro-organisms and altered behaviour can reduce the likelihood of glochidia dispersal. SIGNIFICANCE AND IMPACT OF THE STUDY: This study supports emerging research that contaminants found in agricultural watersheds may be a factor in freshwater mussel population declines. It also provides novel evidence that unionids have a core gut microbiota.


Subject(s)
Bass , Bivalvia , Gastrointestinal Microbiome , Water Pollutants, Chemical , Animals , Female , Fresh Water , Seafood
6.
Proc Biol Sci ; 283(1830)2016 05 11.
Article in English | MEDLINE | ID: mdl-27147101

ABSTRACT

Disturbance is key to maintaining species diversity in plant communities. Although the effects of disturbance frequency and extent on species diversity have been studied, we do not yet have a mechanistic understanding of how these aspects of disturbance interact with spatial structure of disturbance to influence species diversity. Here we derive a novel pair approximation model to explore competitive outcomes in a two-species system subject to spatially correlated disturbance. Generally, spatial correlation in disturbance favoured long-range dispersers, while distance-limited dispersers were greatly suppressed. Interestingly, high levels of spatial aggregation of disturbance promoted long-term species coexistence that is not possible in the absence of disturbance, but only when the local disperser was intrinsically competitively superior. However, spatial correlation in disturbance led to different competitive outcomes, depending on the disturbed area. Concerning ecological conservation and management, we theoretically demonstrate that introducing a spatially correlated disturbance to the system or altering an existing disturbance regime can be a useful strategy either to control species invasion or to promote species coexistence. Disturbance pattern analysis may therefore provide new insights into biodiversity conservation.


Subject(s)
Biodiversity , Ecosystem , Models, Theoretical , Plants , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...